Basic notions of CMP Problems

Notes: some of these problems (denoted *) extend beyond what was convered in the lectures and will require
some extra reading.

Broken Symmetry

1. The Landau theory of a ferromagnet in a magnetic field H implies that the free energy is
given by
F(M) = Fy+ ao(T — Tc)M?* + bM* — pgM H (1)
where ay and b are positive constants.

(a) By evaluating 0F /OM, and setting it equal to zero, show that for no applied field (H = 0)
the magnetization M is zero above T¢ and is proportional to (T — T')/? below T¢.

(b) Show also that at T' = T, M oc HY/.
(c) Show that the form of the free energy also implies that

H
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M =u+v i (2)
where u and v are constants that you should determine. By sketching M? against H/M
for T' just above T, just below T, and exactly at T, show how this method can be used
to determine T. This idea is the basis of the so-called Arrott plot which is a plot of M?
against H /M which is used experimentally to locate T¢ from M (H) data measured at different
temperatures.

2. * This problem requires you to read a description of Widom’s hypothesis.
d ~ Y
(a) Using Widom’s hypothesis in the form f(t,h) = tv f(h/ t?}tl), show that critical parameters
are given (in terms of the scaling parameters y, and 3, and the dimensionality d) as follows

d— 2y —d
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(b) We now redefine the scaling function slightly so that it reads f(¢,h) = h¥n g(h/ t%) where
d
g(z) = z v f(z). Use this form of the function to show that § = -%—

d—yn "
(c) From these results prove the following relations:
a+ 23 +~v=2 Rushbrooke’s law, (4)
a+08(0+1)=2  Griffith’s law.

(d) Assuming the correlation function behaves as G.(x,t) = f (:Etg_Ta> Jx472 argue that we

require vd = 2 — o (known as Josephson’s law) and use this to show v = i

(e) Finally use Fisher’s law (2 — n)v = v to find 7.
Landau-Fermi liquids

1. What is the average energy for an electron in the (non-interacting) Fermi gas?

2. This argument about scattering in a Fermi liquid appears in many books.
Consider an electron with energy Fy > FEp scattering with an electron with energy Fy < Ep
at T'= 0. In order for this to occur we must have final electron states F3 > Er and E4 > EF.
(a) Show that this implies that the lifetime of an electron with £y = Ep is infinite.
(b) If E is a little different to Fr, why does the scatter scattering rate vary as (F; — Erp)??
(¢) For T' # 0 argue that we expect a scattering rate £ = a(E — Ey)? + b(kgT)?, where a and
b are constants.



Simple Harmonic Oscillator

A~ ~ 2452
The simple harmonic oscillator problem is described by the Hamiltonian H = % + 2= and the
commutation relation [z,p] = ih. Consider the creation (a') and annihilation (a) operators we

defined in the lecture.

1.
2.

Show that [a,a] = 0, [af,al] =0, [a,a!] = 1 and H = hw(ala + .

Consider a perturbation to this Hamiltonian 323 +~i* where 8 and ~y are small. By writing the
perturbation in terms of creation and annihilation operators of the original Hamiltonian, show
that the first-order shift in the ground-state energy of the system, due to these anharmonic

parts, is given by
3 ho\?
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(a) Show that the transformation b = ua+va' and bt = ual+wva (with u and v real), preserves
the commutation relations, as long as u? — v? = 1.

* (b) Using the results of (a), diagonalize the Hamiltonian

1 A
H—thM+2)+2(MM+&@, (5)
by transforming it into the form H = he (BTl; + %) and find . This is an example of a Bo-
goliubov transformation and is a useful trick to diagonalize a Hamiltonian. Hint: If you have
a problem with the algebra, see J.F. Annett, Superconductivity, Superfluids and Condensates
for some help.

Quantum fields

1.

(a) Show that i% — HU, where U is shorthand for the time evolution operator U(t,0) = e~
(b) By differentiating OH(t) = eHtOe=1Ht  derive Heisenberg’s equation of motion.

~

. * (a) V(a) is a translation operator with the property V(a)|x) = |x + a). Show that, for an

operator valued field ¢(x), we have Vi(a)p(x)V(a) = ¢(x — a).

* (b) By considering an infinitesimal translation show that an explicit form for the translation
operator is V(a) = e P2 Hint: If you find you have the wrong sign in your exponential,
consider the difference between translating a particle and allowing it to evolve.

Examples of second quantization

1.

An electron system has three momentum states, p;, p2 and ps, and is described by a Hamil-
tonian

. o Vo s
H =By didy — 53 didy. (6)
P pk
States are expressed using a basis |np1np2 np3> and if we put a single electron into the system

then its state may be written [¢)) = a]|100) + b|010) + ¢|001).
Show that the Hamiltonian takes the form

) 10 0 11
H=|E|l010|-2]111 (7)
00 1 21111

Find the energy eigenvalues and the corresponding eigenstates.



2. The nearest neighbour Hubbard model Hamiltonian may be written
H=—tY (eh,¢jo +lytio) + U D Rugiay, (8)
(ig) i
where the first sum is over unique nearest neighbours. Consider a system with two possible

sites for electrons.

(a) Put a single electron in the system. Using a basis | T,0) and |0, T) show that the Hamitonian

is given by

- 0 —t

a=( %) )
Find the energy eigenvalues and eigenstates.

(b) Now put a second electron into the system with opposite spin to the first. Now using the
basis states | T1,0); | T,1); | |,T); and |0, | T), show that the Hamiltonian becomes

v -t —t 0

- -t 0 0 —t

H = St 0 0 -t | (10)
0 -t -t U

Diagonalize this to obtain the eigenstates and energy eigenvalues. Hint: There’s no shame in
using a computer if you like!

Propagators and perturbation theory

1. Show that the single particle propagator G = (z,t,|y,t,) may be written

G = dp(a)d(y)e Frit="0). (11)
p
2. For non-relativistic, free particles in one dimension, show that the propagator is given by
im(z— )2
G — m — e Q(tac—tyy) X (12)

27i(t, — ty)

3. Consider the Lagrangian density £ = %(8,@)2 — %2(;52. We're going to treat the mass term as
a perturbation by splitting the theory into a free part £y = 1(9,¢)? and an interacting part

L = —m;¢2. The free propagator is given, in momentum space, by Go(p) = 1%'

In order to see how the perturbation modifies the propagator consider the infinite sum of
diagrams in the figure.

'Ll
i

If each interaction blob contributes a factor —im? show that the full propagator is given by

i
= o (13)



