Basic notions of CMP

Notes: some of these problems (denoted ${ }^{*}$) extend beyond what was convered in the lectures and will require some extra reading.

Broken Symmetry

1. The Landau theory of a ferromagnet in a magnetic field H implies that the free energy is given by

$$
\begin{equation*}
F(M)=F_{0}+a_{0}\left(T-T_{\mathrm{C}}\right) M^{2}+b M^{4}-\mu_{0} M H \tag{1}
\end{equation*}
$$

where a_{0} and b are positive constants.
(a) By evaluating $\partial F / \partial M$, and setting it equal to zero, show that for no applied field $(H=0)$ the magnetization M is zero above T_{C} and is proportional to $\left(T_{\mathrm{C}}-T\right)^{1 / 2}$ below T_{C}.
(b) Show also that at $T=T_{\mathrm{C}}, M \propto H^{1 / 3}$.
(c) Show that the form of the free energy also implies that

$$
\begin{equation*}
M^{2}=u+v \frac{H}{M} \tag{2}
\end{equation*}
$$

where u and v are constants that you should determine. By sketching M^{2} against H / M for T just above T_{C}, just below T_{C}, and exactly at T_{C}, show how this method can be used to determine T_{C}. This idea is the basis of the so-called Arrott plot which is a plot of M^{2} against H / M which is used experimentally to locate T_{C} from $M(H)$ data measured at different temperatures.
2. * This problem requires you to read a description of Widom's hypothesis.
(a) Using Widom's hypothesis in the form $f(t, h)=t^{\frac{d}{y_{t}}} \tilde{f}\left(h / t^{\frac{y_{h}}{y_{t}}}\right)$, show that critical parameters are given (in terms of the scaling parameters y_{h} and y_{t} and the dimensionality d) as follows

$$
\begin{equation*}
\alpha=2-\frac{d}{y_{t}}, \quad \beta=\frac{d-y_{h}}{y_{t}}, \quad \gamma=\frac{2 y_{h}-d}{y_{t}} . \tag{3}
\end{equation*}
$$

(b) We now redefine the scaling function slightly so that it reads $f(t, h)=h^{\frac{d}{y_{h}}} \tilde{g}\left(h / t^{\frac{y_{h}}{y_{t}}}\right)$ where $g(z)=z^{-\frac{d}{y_{h}}} f(z)$. Use this form of the function to show that $\delta=\frac{y_{h}}{d-y_{h}}$.
(c) From these results prove the following relations:

$$
\begin{array}{cc}
\alpha+2 \beta+\gamma=2 & \text { Rushbrooke's law, } \\
\alpha+\beta(\delta+1)=2 & \text { Griffith's law. } \tag{4}
\end{array}
$$

(d) Assuming the correlation function behaves as $G_{\mathrm{c}}(x, t)=f\left(x t^{\frac{2-\alpha}{d}}\right) / x^{d-2+\eta}$, argue that we require $\nu d=2-\alpha$ (known as Josephson's law) and use this to show $\nu=\frac{1}{y_{t}}$.
(e) Finally use Fisher's law $(2-\eta) \nu=\gamma$ to find η.

Landau-Fermi liquids

1. What is the average energy for an electron in the (non-interacting) Fermi gas?
2. This argument about scattering in a Fermi liquid appears in many books.

Consider an electron with energy $E_{1} \geq E_{\mathrm{F}}$ scattering with an electron with energy $E_{2} \leq E_{\mathrm{F}}$ at $T=0$. In order for this to occur we must have final electron states $E_{3} \geq E_{\mathrm{F}}$ and $E_{4} \geq E_{\mathrm{F}}$.
(a) Show that this implies that the lifetime of an electron with $E_{1}=E_{\mathrm{F}}$ is infinite.
(b) If E_{1} is a little different to E_{F}, why does the scatter scattering rate vary as $\left(E_{1}-E_{\mathrm{F}}\right)^{2}$?
(c) For $T \neq 0$ argue that we expect a scattering rate $\frac{1}{\tau}=a\left(E-E_{\mathrm{F}}\right)^{2}+b\left(k_{\mathrm{B}} T\right)^{2}$, where a and b are constants.

Simple Harmonic Oscillator

The simple harmonic oscillator problem is described by the Hamiltonian $\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega_{0}^{2} \hat{x}^{2}}{2}$ and the commutation relation $[x, p]=\mathrm{i} \hbar$. Consider the creation (\hat{a}^{\dagger}) and annihilation (\hat{a}) operators we defined in the lecture.

1. Show that $[\hat{a}, \hat{a}]=0,\left[\hat{a}^{\dagger}, \hat{a}^{\dagger}\right]=0,\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ and $\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)$.
2. Consider a perturbation to this Hamiltonian $\beta \hat{x}^{3}+\gamma \hat{x}^{4}$ where β and γ are small. By writing the perturbation in terms of creation and annihilation operators of the original Hamiltonian, show that the first-order shift in the ground-state energy of the system, due to these anharmonic parts, is given by

$$
\Delta E=\frac{3}{4} \gamma\left(\frac{\hbar}{m \omega}\right)^{2}
$$

3. (a) Show that the transformation $\hat{b}=u \hat{a}+v \hat{a}^{\dagger}$ and $\hat{b}^{\dagger}=u \hat{a}^{\dagger}+v \hat{a}$ (with u and v real), preserves the commutation relations, as long as $u^{2}-v^{2}=1$.

* (b) Using the results of (a), diagonalize the Hamiltonian

$$
\begin{equation*}
H=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\frac{\Delta}{2}\left(\hat{a}^{\dagger} \hat{a}^{\dagger}+\hat{a} \hat{a}\right), \tag{5}
\end{equation*}
$$

by transforming it into the form $H=\hbar \varepsilon\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right)$ and find ε. This is an example of a Bogoliubov transformation and is a useful trick to diagonalize a Hamiltonian. Hint: If you have a problem with the algebra, see J.F. Annett, Superconductivity, Superfluids and Condensates for some help.

Quantum fields

1. (a) Show that $\mathrm{i} \frac{\partial \hat{U}}{\partial t}=\hat{H} \hat{U}$, where \hat{U} is shorthand for the time evolution operator $\hat{U}(t, 0)=e^{-\mathrm{i} \hat{H} t}$.
(b) By differentiating $\hat{O}_{\mathrm{H}}(t)=e^{\mathrm{i} \hat{H} t} \hat{O} e^{-\mathrm{i} \hat{H} t}$, derive Heisenberg's equation of motion.
2. ${ }^{*}$ (a) $\hat{V}(\mathbf{a})$ is a translation operator with the property $\hat{V}(\mathbf{a})|\mathbf{x}\rangle=|\mathbf{x}+\mathbf{a}\rangle$. Show that, for an operator valued field $\hat{\phi}(\mathbf{x})$, we have $\hat{V}^{\dagger}(\mathbf{a}) \hat{\phi}(\mathbf{x}) \hat{V}(\mathbf{a})=\hat{\phi}(\mathbf{x}-\mathbf{a})$.

* (b) By considering an infinitesimal translation show that an explicit form for the translation operator is $\hat{V}(\mathbf{a})=e^{-\mathrm{i} \hat{\mathbf{p}} \cdot \mathbf{a}}$. Hint: If you find you have the wrong sign in your exponential, consider the difference between translating a particle and allowing it to evolve.

Examples of second quantization

1. An electron system has three momentum states, $\mathbf{p}_{1}, \mathbf{p}_{2}$ and \mathbf{p}_{3}, and is described by a Hamiltonian

$$
\begin{equation*}
\hat{H}=E_{0} \sum_{\mathbf{p}} \hat{d}_{\mathbf{p}}^{\dagger} \hat{d}_{\mathbf{p}}-\frac{V}{2} \sum_{\mathbf{p k}} \hat{d}_{\mathbf{k}}^{\dagger} \hat{d}_{\mathbf{p}} . \tag{6}
\end{equation*}
$$

States are expressed using a basis $\left|n_{\mathbf{p}_{1}} n_{\mathbf{p}_{2}} n_{\mathbf{p}_{3}}\right\rangle$ and if we put a single electron into the system then its state may be written $|\psi\rangle=a|100\rangle+b|010\rangle+c|001\rangle$.
Show that the Hamiltonian takes the form

$$
\hat{H}=\left[E_{0}\left(\begin{array}{lll}
1 & 0 & 0 \tag{7}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\frac{V}{2}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\right] .
$$

Find the energy eigenvalues and the corresponding eigenstates.
2. The nearest neighbour Hubbard model Hamiltonian may be written

$$
\begin{equation*}
\hat{H}=-t \sum_{\langle i j\rangle}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+\hat{c}_{j \sigma}^{\dagger} \hat{c}_{i \sigma}\right)+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}, \tag{8}
\end{equation*}
$$

where the first sum is over unique nearest neighbours. Consider a system with two possible sites for electrons.
(a) Put a single electron in the system. Using a basis $|\uparrow, 0\rangle$ and $|0, \uparrow\rangle$ show that the Hamitonian is given by

$$
\hat{H}=\left(\begin{array}{cc}
0 & -t \tag{9}\\
-t & 0
\end{array}\right) .
$$

Find the energy eigenvalues and eigenstates.
(b) Now put a second electron into the system with opposite spin to the first. Now using the basis states $|\uparrow \downarrow, 0\rangle ;|\uparrow, \downarrow\rangle ;|\downarrow, \uparrow\rangle$; and $|0, \downarrow \uparrow\rangle$, show that the Hamiltonian becomes

$$
\hat{H}=\left(\begin{array}{cccc}
U & -t & -t & 0 \tag{10}\\
-t & 0 & 0 & -t \\
-t & 0 & 0 & -t \\
0 & -t & -t & U
\end{array}\right)
$$

Diagonalize this to obtain the eigenstates and energy eigenvalues. Hint: There's no shame in using a computer if you like!

Propagators and perturbation theory

1. Show that the single particle propagator $G=\left\langle x, t_{x} \mid y, t_{y}\right\rangle$ may be written

$$
\begin{equation*}
G=\sum_{p} \phi_{p}(x) \phi_{p}^{*}(y) e^{-\mathrm{i} E_{p}\left(t_{x}-t_{y}\right)} . \tag{11}
\end{equation*}
$$

2. For non-relativistic, free particles in one dimension, show that the propagator is given by

$$
\begin{equation*}
G=\sqrt{\frac{m}{2 \pi \mathrm{i}\left(t_{x}-t_{y}\right)}} e^{\frac{\mathrm{i} m(x-y)^{2}}{2\left(t_{x}-t_{y}\right)}} . \tag{12}
\end{equation*}
$$

3. Consider the Lagrangian density $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}$. We're going to treat the mass term as a perturbation by splitting the theory into a free part $\mathcal{L}_{0}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}$ and an interacting part $\mathcal{L}_{\text {int }}=-\frac{m^{2}}{2} \phi^{2}$. The free propagator is given, in momentum space, by $G_{0}(p)=\frac{\mathrm{i}}{p^{2}}$.
In order to see how the perturbation modifies the propagator consider the infinite sum of diagrams in the figure.

If each interaction blob contributes a factor $-\mathrm{i} m^{2}$ show that the full propagator is given by

$$
\begin{equation*}
G=\frac{\mathrm{i}}{p^{2}-m^{2}} \tag{13}
\end{equation*}
$$

