
Basic notions of CMP Problems

Notes: some of these problems (denoted *) extend beyond what was convered in the lectures and will require
some extra reading.

Broken Symmetry

1. The Landau theory of a ferromagnet in a magnetic field H implies that the free energy is
given by

F (M) = F0 + a0(T − TC)M2 + bM4 − µ0MH (1)

where a0 and b are positive constants.

(a) By evaluating ∂F/∂M , and setting it equal to zero, show that for no applied field (H = 0)
the magnetization M is zero above TC and is proportional to (TC − T )1/2 below TC.

(b) Show also that at T = TC, M ∝ H1/3.

(c) Show that the form of the free energy also implies that

M2 = u+ v
H

M
(2)

where u and v are constants that you should determine. By sketching M2 against H/M
for T just above TC, just below TC, and exactly at TC, show how this method can be used
to determine TC. This idea is the basis of the so-called Arrott plot which is a plot of M2

against H/M which is used experimentally to locate TC from M(H) data measured at different
temperatures.

2. * This problem requires you to read a description of Widom’s hypothesis.

(a) Using Widom’s hypothesis in the form f(t, h) = t
d
yt f̃(h/t

yh
yt ), show that critical parameters

are given (in terms of the scaling parameters yh and yt and the dimensionality d) as follows

α = 2 − d
yt
, β = d−yh

yt
, γ = 2yh−d

yt
. (3)

(b) We now redefine the scaling function slightly so that it reads f(t, h) = h
d

yh g̃(h/t
yh
yt ) where

g(z) = z
− d

yh f(z). Use this form of the function to show that δ = yh

d−yh
.

(c) From these results prove the following relations:

α+ 2β + γ = 2 Rushbrooke’s law,
α+ β(δ + 1) = 2 Griffith’s law.

(4)

(d) Assuming the correlation function behaves as Gc(x, t) = f
(

xt
2−α

d

)

/xd−2+η, argue that we

require νd = 2 − α (known as Josephson’s law) and use this to show ν = 1
yt

.

(e) Finally use Fisher’s law (2 − η)ν = γ to find η.

Landau-Fermi liquids

1. What is the average energy for an electron in the (non-interacting) Fermi gas?

2. This argument about scattering in a Fermi liquid appears in many books.

Consider an electron with energy E1 ≥ EF scattering with an electron with energy E2 ≤ EF

at T = 0. In order for this to occur we must have final electron states E3 ≥ EF and E4 ≥ EF.
(a) Show that this implies that the lifetime of an electron with E1 = EF is infinite.
(b) If E1 is a little different to EF, why does the scatter scattering rate vary as (E1 − EF)2?
(c) For T 6= 0 argue that we expect a scattering rate 1

τ
= a(E −EF)2 + b(kBT )2, where a and

b are constants.



Simple Harmonic Oscillator

The simple harmonic oscillator problem is described by the Hamiltonian Ĥ = p̂2

2m
+

mω2
0 x̂2

2
and the

commutation relation [x, p] = ih̄. Consider the creation (â†) and annihilation (â) operators we
defined in the lecture.

1. Show that [â, â] = 0, [â†, â†] = 0, [â, â†] = 1 and Ĥ = h̄ω(â†â+ 1
2
).

2. Consider a perturbation to this Hamiltonian βx̂3+γx̂4 where β and γ are small. By writing the
perturbation in terms of creation and annihilation operators of the original Hamiltonian, show
that the first-order shift in the ground-state energy of the system, due to these anharmonic
parts, is given by

∆E =
3

4
γ
(

h̄

mω

)2

.

3. (a) Show that the transformation b̂ = uâ+vâ† and b̂† = uâ†+vâ (with u and v real), preserves
the commutation relations, as long as u2 − v2 = 1.

* (b) Using the results of (a), diagonalize the Hamiltonian

H = h̄ω
(

â†â+
1

2

)

+
∆

2

(

â†â† + ââ
)

, (5)

by transforming it into the form H = h̄ε
(

b̂†b̂+ 1
2

)

and find ε. This is an example of a Bo-

goliubov transformation and is a useful trick to diagonalize a Hamiltonian. Hint: If you have

a problem with the algebra, see J.F. Annett, Superconductivity, Superfluids and Condensates

for some help.

Quantum fields

1. (a) Show that i∂Û
∂t

= ĤÛ , where Û is shorthand for the time evolution operator Û(t, 0) = e−iĤt.

(b) By differentiating ÔH(t) = eiĤtÔe−iĤt, derive Heisenberg’s equation of motion.

2. * (a) V̂ (a) is a translation operator with the property V̂ (a)|x〉 = |x + a〉. Show that, for an

operator valued field φ̂(x), we have V̂ †(a)φ̂(x)V̂ (a) = φ̂(x − a).

* (b) By considering an infinitesimal translation show that an explicit form for the translation

operator is V̂ (a) = e−ip̂·a. Hint: If you find you have the wrong sign in your exponential,

consider the difference between translating a particle and allowing it to evolve.

Examples of second quantization

1. An electron system has three momentum states, p1, p2 and p3, and is described by a Hamil-
tonian

Ĥ = E0

∑

p

d̂†pd̂p −
V

2

∑

pk

d̂†kd̂p. (6)

States are expressed using a basis |np1np2np3〉 and if we put a single electron into the system
then its state may be written |ψ〉 = a|100〉 + b|010〉 + c|001〉.

Show that the Hamiltonian takes the form

Ĥ =





E0







1 0 0
0 1 0
0 0 1





−
V

2







1 1 1
1 1 1
1 1 1











 . (7)

Find the energy eigenvalues and the corresponding eigenstates.



2. The nearest neighbour Hubbard model Hamiltonian may be written

Ĥ = −t
∑

〈ij〉

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑

i

n̂i↑n̂i↓, (8)

where the first sum is over unique nearest neighbours. Consider a system with two possible
sites for electrons.

(a) Put a single electron in the system. Using a basis | ↑, 0〉 and |0, ↑〉 show that the Hamitonian
is given by

Ĥ =

(

0 −t
−t 0

)

. (9)

Find the energy eigenvalues and eigenstates.

(b) Now put a second electron into the system with opposite spin to the first. Now using the
basis states | ↑↓, 0〉; | ↑, ↓〉; | ↓, ↑〉; and |0, ↓↑〉, show that the Hamiltonian becomes

Ĥ =











U −t −t 0
−t 0 0 −t
−t 0 0 −t
0 −t −t U











. (10)

Diagonalize this to obtain the eigenstates and energy eigenvalues. Hint: There’s no shame in

using a computer if you like!

Propagators and perturbation theory

1. Show that the single particle propagator G = 〈x, tx|y, ty〉 may be written

G =
∑

p

φp(x)φ
∗
p(y)e

−iEp(tx−ty). (11)

2. For non-relativistic, free particles in one dimension, show that the propagator is given by

G =

√

m

2πi(tx − ty)
e

im(x−y)2

2(tx−ty) . (12)

3. Consider the Lagrangian density L = 1
2
(∂µφ)2 − m2

2
φ2. We’re going to treat the mass term as

a perturbation by splitting the theory into a free part L0 = 1
2
(∂µφ)2 and an interacting part

Lint = −m2

2
φ2. The free propagator is given, in momentum space, by G0(p) = i

p2 .

In order to see how the perturbation modifies the propagator consider the infinite sum of
diagrams in the figure.

If each interaction blob contributes a factor −im2 show that the full propagator is given by

G =
i

p2 −m2
. (13)


