Quantum Fields for Experimental CMP Problems

Simple Harmonic Oscillator

The simple harmonic oscillator problem is described by the Hamiltonian H = 2; + mwom and the

commutation relation [z,p] = ih. Consider the creation (a') and annihilation (a) operators we
defined in the lecture.

1. Show that [a,a] = 0, [a',a'] =0, [a,a'] =1 and H= hw(ata + %)

2. Consider a perturbation to this Hamiltonian 343+~#* where § and ~y are small. By writing the
perturbation in terms of creation and annihilation operators of the original Hamiltonian, show
that the first-order shift in the ground-state energy of the system, due to these anharmonic

parts, is given by
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3. (a) Show that the transformation b = ua+wva' and b" = ual +va (with v and v real), preserves
the commutation relations, as long as u? — v? = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

a (a'af + aa), (1)

1
H = hw( +2>+2

by transforming it into the form H = he (ZA)TZAJ + %) and find . This is an example of a Bo-
goliubov transformation and is a useful trick to diagonalize a Hamiltonian. Hint: If you have
a problem with the algebra, see J.F. Annett, Superconductivity, Superfluids and Condensates
for some help.

Quantum fields

1. (a) Show that i% — HU, where U is shorthand for the time evolution operator U(t, 0) = e,
(b) By differentiating Oy (t) = e#*Oe~1#, derive Heisenberg’s equation of motion.

2. (a) V(a) is a translation operator with the property V( )|x) = |x + a). Show that, for an
operator valued field ¢(x), we have Vi(a)p(x)V(a) = ¢(x — a).

(b) By con&dermg an infinitesimal translation show that an explicit form for the translation

operator is V( ) = e P2 Hint: If you find you have the wrong sign in your exponential,
consider the difference between translating a particle and allowing it to evolve.

3. In this problem we’ll canonically quantize a system described by the complex scalar field

Lagrangian
£ = 9,01 (@) 0(x) — m2f (@) (). (2)

Note that in this system we can treat the ¢» and 91 fields as independent. (It’s an interesting
questions to consider why you're allowed to do this!)

(a) Show that the momentum density conjugate to the 1 field is H?p = 0%)" and find H?N
(b) Find the Hamiltonian density H = 3, T129)® —



(¢) The mode expansion to use here is
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with equal time commutation relations {dp,dg] = {i)p,ég} = 6@ (p — q). Insert the mode
expansion and show that the normal ordered Hamiltonian is given by

ﬁz/&ﬂ%@mr%@J, (4)

and interpret this result. For help see Aitchison and Hey.
Examples of second quantization

1. An electron system has three momentum states, p1, p2 and ps3, and is described by a Hamil-
tonian

. o Vo
H =By didy — 53 didy. (5)
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States are expressed using a basis |np, np,Np,) and if we put a single electron into the system

then its state may be written [¢)) = a|100) 4 b|010) + ¢|001).
Show that the Hamiltonian takes the form

) 10 0 11
aA=|Bl010]=->1111]]| (6)
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Find the energy eigenvalues and the corresponding eigenstates.
2. The nearest neighbour Hubbard model Hamiltonian may be written
H= —tZ(é;rJéjg + é;r-géig) +U D iy, (7)
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where the first sum is over unique nearest neighbours. Consider a system with two possible
sites for electrons.

(a) Put a single electron in the system. Using a basis | T,0) and |0, 1) show that the Hamitonian

is given by
- 0 —t
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Find the energy eigenvalues and eigenstates.

(b) Now put a second electron into the system with opposite spin to the first. Now using the
basis states | 11,0); | 1,1); | 4, 1); and |0, ]1), show that the Hamiltonian becomes

U —t —t 0
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H=1| _, o o —t| (9)
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Diagonalize this to obtain the eigenstates and energy eigenvalues. Hint: There’s no shame in
using a computer if you like!



Propagators and perturbation theory

1. Show that the single particle propagator G' = (z,t,|y,t,) may be written

G = gp(x)dy(y)e Pt (10)
p

2. Prove the most important result in the path integral version of quantum field theory:

3. For non-relativistic, free particles, show that the propagator is given by

m im(a:—y)2
G = e 2Ma—ty) | 12
\ 2rmi(t, —1,)¢ (12)

4. Consider the Lagrangian density £ = %(8,@)2 — ’”72(;52. We're going to treat the mass term as
a perturbation by splitting the theory into a free part Ly = %(au(b)Z and an interacting part

L = —%2¢2. The free propagator is given, in momentum space, by Go(p) = 1%.
In order to see how the perturbation modifies the propagator consider the infinite sum of

diagrams in the figure.

'Ll
-+_
-—f__
..F_
—-|...
3

If each interaction blob contributes a factor —im? show that the full propagator is given by

G i



