
Quantum Fields for Experimental CMP Problems

Simple Harmonic Oscillator

The simple harmonic oscillator problem is described by the Hamiltonian Ĥ = p̂2

2m
+

mω2
0 x̂

2

2
and the

commutation relation [x, p] = ih̄. Consider the creation (â†) and annihilation (â) operators we
defined in the lecture.

1. Show that [â, â] = 0, [â†, â†] = 0, [â, â†] = 1 and Ĥ = h̄ω(â†â+ 1
2
).

2. Consider a perturbation to this Hamiltonian βx̂3+γx̂4 where β and γ are small. By writing the
perturbation in terms of creation and annihilation operators of the original Hamiltonian, show
that the first-order shift in the ground-state energy of the system, due to these anharmonic
parts, is given by
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.

3. (a) Show that the transformation b̂ = uâ+vâ† and b̂† = uâ†+vâ (with u and v real), preserves
the commutation relations, as long as u2 − v2 = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

H = h̄ω

(

â†â+
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2

)

+
∆

2

(

â†â† + ââ
)

, (1)

by transforming it into the form H = h̄ε
(

b̂†b̂+ 1
2

)

and find ε. This is an example of a Bo-

goliubov transformation and is a useful trick to diagonalize a Hamiltonian. Hint: If you have

a problem with the algebra, see J.F. Annett, Superconductivity, Superfluids and Condensates

for some help.

Quantum fields

1. (a) Show that i∂Û
∂t

= ĤÛ , where Û is shorthand for the time evolution operator Û(t, 0) = e−iĤt.

(b) By differentiating ÔH(t) = eiĤtÔe−iĤt, derive Heisenberg’s equation of motion.

2. (a) V̂ (a) is a translation operator with the property V̂ (a)|x〉 = |x + a〉. Show that, for an

operator valued field φ̂(x), we have V̂ †(a)φ̂(x)V̂ (a) = φ̂(x− a).

(b) By considering an infinitesimal translation show that an explicit form for the translation

operator is V̂ (a) = e−ip̂·a. Hint: If you find you have the wrong sign in your exponential,

consider the difference between translating a particle and allowing it to evolve.

3. In this problem we’ll canonically quantize a system described by the complex scalar field
Lagrangian

L = ∂µψ
†(x)∂µψ(x)−m2ψ†(x)ψ(x). (2)

Note that in this system we can treat the ψ and ψ† fields as independent. (It’s an interesting
questions to consider why you’re allowed to do this!)

(a) Show that the momentum density conjugate to the ψ field is Π0
ψ = ∂0ψ† and find Π0

ψ† .

(b) Find the Hamiltonian density H =
∑

aΠ
0
a∂0ψ

a − L.



(c) The mode expansion to use here is

ψ̂(x) =
∫ d3p
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with equal time commutation relations
[

âp, â
†
q

]

=
[

b̂p, b̂
†
q

]

= δ(3)(p − q). Insert the mode

expansion and show that the normal ordered Hamiltonian is given by

Ĥ =
∫

d3pEp

(

â†pâp + b̂†pb̂p
)

, (4)

and interpret this result. For help see Aitchison and Hey.

Examples of second quantization

1. An electron system has three momentum states, p1, p2 and p3, and is described by a Hamil-
tonian

Ĥ = E0

∑

p

d̂†pd̂p −
V

2

∑

pk

d̂
†
kd̂p. (5)

States are expressed using a basis |np1np2np3〉 and if we put a single electron into the system
then its state may be written |ψ〉 = a|100〉+ b|010〉+ c|001〉.

Show that the Hamiltonian takes the form
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Find the energy eigenvalues and the corresponding eigenstates.

2. The nearest neighbour Hubbard model Hamiltonian may be written

Ĥ = −t
∑

〈ij〉

(ĉ†iσ ĉjσ + ĉ
†
jσ ĉiσ) + U

∑

i

n̂i↑n̂i↓, (7)

where the first sum is over unique nearest neighbours. Consider a system with two possible
sites for electrons.

(a) Put a single electron in the system. Using a basis | ↑, 0〉 and |0, ↑〉 show that the Hamitonian
is given by

Ĥ =

(

0 −t
−t 0

)

. (8)

Find the energy eigenvalues and eigenstates.

(b) Now put a second electron into the system with opposite spin to the first. Now using the
basis states | ↑↓, 0〉; | ↑, ↓〉; | ↓, ↑〉; and |0, ↓↑〉, show that the Hamiltonian becomes

Ĥ =
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. (9)

Diagonalize this to obtain the eigenstates and energy eigenvalues. Hint: There’s no shame in

using a computer if you like!



Propagators and perturbation theory

1. Show that the single particle propagator G = 〈x, tx|y, ty〉 may be written

G =
∑

p

φp(x)φ
∗
p(y)e

−iEp(tx−ty). (10)

2. Prove the most important result in the path integral version of quantum field theory:

∫ ∞

−∞
dxe−

ax2

2
+bx =

√

2π

a
e

b2

2a . (11)

3. For non-relativistic, free particles, show that the propagator is given by

G =

√

m

2πi(tx − ty)
e

im(x−y)2

2(tx−ty) . (12)

4. Consider the Lagrangian density L = 1
2
(∂µφ)

2 − m2

2
φ2. We’re going to treat the mass term as

a perturbation by splitting the theory into a free part L0 = 1
2
(∂µφ)

2 and an interacting part

Lint = −m2

2
φ2. The free propagator is given, in momentum space, by G0(p) =

i
p2
.

In order to see how the perturbation modifies the propagator consider the infinite sum of
diagrams in the figure.

If each interaction blob contributes a factor −im2 show that the full propagator is given by

G =
i

p2 −m2
. (13)


